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INTRODUCTION
by

S. T. Algermissen
U.S. Geological Survey
Denver, CO 80225

The March.3, 1985, earthquake is the largest earthquake to strike central
Chile since 1906. Preliminary reports of the wide distribution of the damage
soon made it apparent that the earthquake was very significant as a geophys—
ical event and that the scientific and engineering study of this major shock
would be of great value in improving our understanding of plate margin
earthquakes, the distribution of strong ground motion, resulting building
damage and geologic effects such as soil liquefaction and landsliding.
Accordingly, the decision was made to send a U.S. Geological Survey team and
instrumentation to Chile with the following objectives: 1) to aid Chilean
seismologists in locating the many aftershocks following the main shocks by
providing portable seismographs to supplement the Chilean seismograph network;
2) to provide some additional strong motion seismographs; 3) to conduct a
study of ground response, and its relation to geological factors and observed
Modified Mercalli intensity; and 4) to investigate the geological and
engineering (damage) consequences of the earthquake.

The field investigation began on March 21 and ended on April 8, 1985,
Participants from the U.S. Geological Survey in the field investigation were
S. T. Algermissen, Mehmet Celebi, George Plafker, Eugene Sembera and Paul
Thenhaus. The seismic equipment taken to Chile consisted of two strong motion
accelerographs, two portable, smoked paper recording seismographs (for
location of aftershocks) and 8 GEOS (General Earthquake Observation System)
digital seismograph systems (for ground response investigations). In all of
the field investigations, close cooperation with scientists and engineers at
the Universidad de Chile (Santiago), the Universidad Frederico Santa Maria
(Valparaiso) and the Universidad Catolica (Santiago). During the time the
seismic equipment was in Chile, the two smoked paper recording seismographs
and two accelerographs were operated by the Universidad de Chile and a team
from the Universidad Nacional Autdnoma de México (UNAM). Immediately after
the March 3 earthquake the UNAM team, in cooperation with the Universidad de
Chile, fielded a number of portable seismographs to supplement the Chilean
seismograph network (Ponce and others, 1985).

The U.S. Geological Survey team made a reconnaissance investigation of
the damage, occupied 12 sites with the GEOS digital seismographs, and
conducted damage and intensity surveys. Over 55 earthquakes were recorded at
two or more sites during the study; 12 were recorded at four or more sites and
six were recorded at six sites. Preliminary results of the field studies are
outlined in this report to show the general nature of the engineering and
geological effects of the earthquake and the scope of the site response
investigations,



THE EARTHQUAKES OF MARCH 3, 1985,
AND THE SEISMICITY OF CENTRAL CHILE

by

S. T. Algermissen, U.S. Geological -Survey, Denver, CO 80225;
and E. Kausel, University of Chile, Santiago, Chile

The Earthquakes: of March 3, 1985

The main shock was actually at least two shocks. The initial motion
began at 22:46:56.4 followed by a larger event at 22:47:069 (Greenwich Mean
Time). Hypocenter parameters for the two shocks computed by the National
Earthquake Information Service (NEIS) and the Department of Geophysics,
University of Chile, are shown in table 1. The magnitude (m,) of the first
event was 5.2, The magnitude (m, ) of the second event was 6.9. The composite
motion produced a magnitude (M_) of 7.8 (U.S. Geological Survey, 1985). It is
probable that more research wiil result in the resolution of additiomnal,
discrete events within the second, larger shock. The main shocks were
preceded by an interesting foreshock sequence. Some characteristics of the
sequence of earthquakes preceding the main shock are shown in figure 1, based
on earthquakes located by the U.S. Geological Survey National Earthquake
Information Service (NEIS). Note the period of quiescence from January 26
through February 20 and the greatly increased activity from February 21
through February 27 followed by no significant energy release prior to the
main shocks of March 3., Figure 1 also shows approximate relative strain
release based on the assumption that earthquakes in central Chile located by
NEIS, but not assigned magnitudes, had an average magnitude of about m =4.2.
For this assumption, the equivalent numbers of m =4,2 earthquakes were
computed using log;,E = 5.8 + 2.4mb (Richter, 1958). For shocks larger than
mb=5.5 the equivalent M, magnitude and relationship logjgE = 11.8 + l.SMs was
used to compute energy release. The same procedure. was used in figure 2 which
shows some characteristics of the aftershock sequence through June 17, 1985.
The proportion of energy released as aftershocks through June 17 is about 36
percent of the energy released in the main shock. This relatively high ratio
of energy released in aftershocks compared with the main shocks, is, to some
extent, a result of the M_=7.2 aftershock of April 9, 1985. A focal mechanism
for the earthquake has not yet been computed from instrumental data. However,
Plafker (this report) believes that the mechanism was a relative seaward
thrusting along the plate boundary dipping from the Peru—-Chile Trench beneath
the continental margin. Figure 3 shows the magnitude distribution of
foreshocks and aftershocks and figure 4 shows the locations of aftershocks
located by NEIS through June 17, 1985. The aftershock zone 1is about 200 km in
length north—south and is at least 100 km wide in an east-west direction along
the dip of the subducted Nazca plate.



TABLE 1.--Hypocenter parameters of the principal
shocks of March 3, 1985

Origin time Latitude Longitude Depth my Mg Source
km
22:46:56.4  33.118° S. 71.822° W. 33 N. 5.2 ___ NEIS (PDE No. 9-85,
March 21, 1985).
22:47:06.9 33.155° S. T71.980° W. 33 N. 6.9 7.8 Do.
22:46:56.9 33.24° 8. 71.86° W. 16 Univ. of Chile,

Dept. of Geophysics
(E. Kausel, oral
commun., 1985)
(only initial

shock located).

SEISMICITY OF CENTRAL CHILE

The purpose of the following discussion is only to give some general
information about the seismicity of central Chile and to provide a frame of
reference for the location of the March 3 earthquake. Earthquakes Mszﬁ.o in
central Chile and western Argentina from 1570 to 1981 are shown in figure 5.
The earthquake hypocenter data shown in figure 5 and subsequent figures are
taken from a new catalog of hypocenter and intensity data for earthquakes in
South America to be published this year (Askew and Algermissen, eds., 1985).

Large earthquakes (Ms about 8 or larger) have occurred in central Chile in
1570, 1647, 1657, 1730, 1751, 1822, 1835, 1906, 1922, and 1928. Many other
shocks in the magnitude 7-8 range have also caused extensive damage in Chile.
An example is the Chillan earthquake of 1939 that resulted in about 30,000
deaths and essentially destroyed Chilldn. The 1647 earthquake heavily damaged
Santiago and life loss was estimated at about 1,000 or 20 percent of the
inhabitants (Lomnitz, 1970). Santiago also experienced significant damage in
1730, 1822 and 1906 as a result of offshore earthquakes that heavily damaged
Valparaiso. Many other areas, and especially the cities of Concepcidn and
Copiapd have been repeatedly, heavily damaged in historic times. Nishenko
(1985) has pointed out that in the coastal zone between lat 32° and 35° S. all
of the large shocks since 1906, with the exception of the 1928 Talca earthquake,
are located in the vicinity of the Juan Fernandez Rise-Chile-margin intersection
at lat 33° S.

Figure 6 is an east-west profile through the main shock (A-A' in fig. 5)
showing earthquakes Ms=6.0 and larger from 1570 to 1981 together with the March
3, 1985 main shock and the large aftershock of April 9, 1985. Earthquakes that
have occurred 100 km to the north and south of the profile have been projected
on to the profile. Note that earthquake depths based on instrumental data are
not available for many of the important shocks and for these shocks the depths
have been estimated from other data. A better idea of the depth range of



earthquakes along the same profile may be obtained by plotting all of the
earthquakes regardless of magnitude. This data set (shown in fig. 7) contains a
much higher percentage of recent, small earthquakes for which focal depths have
been computed from instrumental data.
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Figure 1.--Temporal distribution of preshock activity and energy release from

December, 4, 1984, to March 3, 1985, in the area bounded by 32 -35 S, lat. an
70.5 -73.5 W. long., roughly the aftershock area of the March 3 earthquake.

Note the lack of activity from January 26 - February 20 (day 53 to day 78),
1985, in the zone.
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Figure 4.——Earthquakes in central Chile, March 3, 1985 - June 17, 1985. The
diamonds represent earthquakes < 6.0; The squares represent earthquakes 6.0
imb < 7.0 and the triangle is the Ms=7.2 aftershock of April 9, 1985.
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Figure 5.--Earthquakes in central Chile and western Argentina, 1570-1981. The
main shock of March 3, 1985, and the large aftershock of April 9, 1985, are
also shown. The large octagons represent earthquakes M 2 8.0; The triangles
7.0 < M, < 8.0; the squares 6.0 < M, < 7.0. Open symbols represent
earthquakes < 70 km in depth; solid symbols > 70 km in depth. Stars represent
cities. Hypocenters prior to this century are based on non-instrumental data.
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GEOLOGIC RECONNAISSANCE OF THE
MARCH 3, 1985, CHILE EARTHQUAKE

by

George Plafker, U.S. Geological Survey,
Menlo Park, CA 94025

with contributions from

Anibal Gajardo C., Irma Gonzalez M., and Eduardo Valenzuela,
University of Chile, Santiago Chile; and J. C. Savage,
U.S. Geological Survey, Menlo Park, CA 940025

A field reconnaissance of the geologic aspects of the March 3, 1985,
Chile earthquake and its associated tsunami was made by the writer from March
27 through April 1 as part of a U.S. Geological Survey four—person team effort
funded by the Office of Foreign Disaster Assistance. The other U.S.
Geological Survey personnel, Ted Algermissen, Paul Thenhaus, and Eugene
Sembera, are geophysicists who were engaged in seismic regionalization studies
of the earthquake sequence. The field work was greatly expedited by voluntary
participation of Anibal Gajardo C., Eduardo Valenzuela, and Irma Gonzales from
the Department of Geology, University of Chile, during the period March 27-29
and by the assistance of Gajardo in expediting logistic arrangements and
obtaining data from Chilean agencies involved in post—quake emergency studies.

Primary goals of the geologic study were to determine whether the
earthquake sequence was accompanied by surface faulting on land and (or)
permanent vertical tectonic displacement along the coast. This type of
information, together with the seismologic data, can be used to construct
models for the causative faults that generated the earthquake sequence and the
assoclated seismic sea waves as well as for interpreting the relationship of
surface damage to faulting. Secondary goals of the field study were to
determine the nature and distribution of surficial geologic effects of the
seismic shaking, most notably compaction and liquefaction of unconsolidated
deposits, and landslides. Information on these phenomena is essential for
evaluating the roles of seismic shaking and foundation failure in structural
damage and the potential behavior of different geologic deposits for seismic
zonation.

Vertical tectonic displacements and the tsunami: The March 3, 1985,
earthquake occurred beneath the continental shelf within the Peru-Chile arc
which represents a zone of active convergence between the oceanic Nazca plate
and the South American continental plate. Such earthquakes may be accompanied
by regional vertical and horizontal tectonic displacements in and near the
focal region and by tsunamis resulting from earthquake-related vertical
displacement of the sea floor. Just such effects accompanied the great 1960
earthquake which affected a segment of the Chile coast extending 1,000 km
south from Concepcion. Both vertical displacements and tsunamis occurred in
that same region during earthquakes in 1835 and 1837,

Vertical and horizontal displacements on land can be measured by geodetic
techniques where suitable pre—quake surveys are available. However, a rapid
and effective method of approximating vertical displacements along the coast
is through observations of the upper growth limits of sessile intertidal
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organisms relative to tide levels and from observations made by local
residents of tide levels relative to known reference markers along the

shore. In addition, data on the nature and distribution of offshore vertical
displacements may be inferred indirectly from analysis of the tsunami waves
they generate.

Both the observations of intertidal organisms and observations of local
fishermen or shellfish gatherers indicate that there is no detectable
permanent vertical displacement of the shoreline in the area studied, which
extends from Matanzas on the south to Papudo on the north. However, the
occurrence of a tsunami along the entire coast near the focal region suggests
that regional vertical tectonic displacement of the sea floor did occur during
the earthquake. At all localities the tsunami was described as very fast-
changing tides with periods of a few minutes to tens of minutes that reached
to about extreme high tide levels. The amount of deformation is not deter-
minable, but was large enough to generate water waves with half-wave
amplitudes of 1.2 to 1.8 m between Valparaiso and Cartagena, and possibly as
large as 3 m at Matanzas (fig. 1). Furthermore, reports that the tsunami sea
level changes were noted at these coastal localities within 10 min after it
started, and in some cases “"immediately” after the earthquake, suggest that
the eastern limit of the generative region was at or very close to the coast
in most places.

There are consistent reports by local residents in the coastal area from
Matanzas to several kilometers north of Algarrobo of unusually low tides for a
period of 3 to 5 days following the earthquake after which the tides appar-
ently returned to normal (fig. 1). Near Algarrobo, an estimate of the change
reflects roughly 20 cm uplift. This suggests the intriguing possibility that
there was a small amount of earthquake-related uplift along parts of the coast
and that it was recovered in 3 to 5 days after the earthquake.

Such an effect could result from a propagating thrust mechanism for the
earthquake in which the initial rupture was at the down-dip end of the Benioff
zone and subsequently propagated progressively up—-dip towards the Chile Trench
following the earthquake as illustrated diagrammatically in figure 2. After-
shock data suggest an initial rupture zone about 100 km long and roughly 40 km
wide with the eastern limit extending from just beneath the coast to 10 km
inland and a depth at the coast on the order of 40 km (Mario Pardo and Lautaro
Ponce, oral commun., 1985). The plate convergence rate along this segment of
the Peru Trench is 9.2 cm/yr so that since the last major earthquake in 1906,
the maximum elastic strain accumulation and slip along the plate boundary
during the March 3, 1985 event could be on the order of 7.2 m. Figure 2 is a
dislocation model prepared by J. C. Savage of the U.S. Geological Survey
showing the vertical surface displacements resulting from 7.2 m slip on a
propagating fault with dip of 21° and widths of 40 km (fig. 2,A), 90 km (fig.
2,B), and 120 km (fig. 2,C). The model for the initial conditions (A) causes
sudden offshore uplift with maximum amplitude 2.1 m and E-W width of about 55
km and this uplift of the continental shelf in turn generated the tsunami.

The dislocation model is compatible with the available near-field data on
the maximum wave heights and the short time between the earthquake and onset
of the tsunami. It could also account for the reports of anomalously low
tides at some coastal localities, where uplift could be as much as 50 cm,
depending upon the position of the shoreline relative to the eastern edge of
the focal region. Subsequent up-dip migration of the dislocation would shift
the null point between uplift and subsidence as much as 12 km westward thereby

14
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Figure 2. Dislocation model showing vertical displacements (dotted lines)
resulting from a propagating thrust offset of 7.2 m along the plate
boundary beneath the Peru-Chile arc. Rupture lengths shown are:

A5 40 km, B = 90 km, C = 120 km.
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bringing shorelines that were,initially uplifted back to normal or possible
even into the zone of subsidence. The model predicts that small amounts of
tectonic subsidence on the order of a few tens of centimeters 1is possible for
the more easterly segments of the coast., Although no evidence for such
changes was found during my reconnaissance, small amounts of coastal
submergence are inherently more difficult to detect than small amounts of
emergence. The effect of subsidence may not become apparent to coastal
residents until after they experience tidal cycles that include maximum annual
highs and lows, which provide the best reference datums along the coast.

The dislocation model implies large permanent subsidence of as much as
120 cm at about 20-30 km east of the coast (fig. 2,C). Such displacements
should be readily detectable by releveling of first—order lines that extend
inland from the coast. Although the data for horizontal strains are not shown
on figure 2, they are large enough to give angular changes of as much as 5
seconds of arc for favorably oriented triangulation configurations near the
coast and should be easily measured by retriangulation of the first-—order net
in that region. Thus, suitable geodetic surveys in the coastal region
adjacent to the focal region could provide crucial quantitative data on
regional tectonic deformation associated with the earthquake.

A check on the reasonableness of the dislocation model chosen for the
initial rupture can be obtained by comparing its theoretical seismic moment
with the moment to be expected for a 7.8 M, earthquake. Seismic moment (Mo)
is given by:

Mo = ,ugD

where u 1s the shear modulus (4 x 101l dyne/cmz), § is average slip (7.2 m),
and D is area of the fault plane (100 km x 40 km). Thus, the calculated
moment of 1.1 x 1028 dyne-cm is within a factor of 2 of the moment of 5 x 1027
dyne-cm appropriate for a 7.8 Mg earthquake.

Surface faults: No evidence, either direet or indirect, was found to
indicate that surface faults were activated in the focal region of the March 3,
1985, earthquake. Numerous faults that have had late Cenozoic vertical
displacement, some as young as Quaternary, occur in the focal region (geologic
map of the Valparaiso—San Antonio sheet, 1:250,000, Jose Corvalan D. and
Andres Davila D., 1963-1964; Eduardo Valenzuela, unpub, data). The majority
of these faults trend generally NW-SE, a few trend NE-SW, and at least one is
essentially N-S. During this study five faults in the focal region were
examined for indications of displacement possibly related to the earthquake of
March 3. No evidence of renewed displacement was found. In a few localities,
open extension cracks occur in steep bedrock outcrops in or near the faults
that apparently result from shaking-induced gravitational settling of
fracture~bounded blocks. Furthermore, although some of these faults intersect
the coast, no indication of differential vertical displacement of tide-
controlled shoreline features eould be detected as would be expected for
earthquake-related vertical offsets along these faults. Cenozoic faults
checked in the field are listed below.

17



Table l.--Surface faults examined
[See fig. 1 for locations.]

No. Locality Trend Displacement Age

A. Pta. Extremo NNE E side down Late Cenozoic
(1 km SW Matanzas)

B. Rio Rapel NE SE side down Post-Miocene or
(1 km SE Rapel) 20 mt+ ?Pliocene
C. Highway 78 WNW NE side down Post-early
(2 km NE San Antonio) Pleistocene
D. Loma de la Cruz NW SW side down Post-Miocene
E. Loma della Cruz NNE E side down Post-Miocene

Landslides, rockfalls, and debris falls: The earthquake shaking
triggered a modest number of landslides and falls or slides of rock and debris
on natural slopes along the coast and in the mountains as well as in man-made
cuts for highways, railroads, and structures (fig. 1). Occurrence of the
earthquake towards the end of the dry season at a time of minimum ground
saturation undoubtedly significantly minimized the effect of downslope mass
wasting effects.

Larger rotational slides are surprisingly rare despite the moderately
rugged terrain of the Coastal Mountain belt. Only one such slide, located
near Navidad, occurs on a natural slope (fig. 1); all others seen were in
areas of oversteepened slopes in man—-made cuts for transportation facilities
and structures. Rockfalls and debris falls are especially numerous along the
more rugged coastal sea cliffs and in steep cuts in the late Cenozoic marine
strata and old dune deposits in the coastal areas. Foundation failure due to
landslides or incipient landslides caused significant damage to structures,
roads, and utilities in Valparaiso, ViNa del Mar, in suburbs along the coast
north of Vina del Mar, and in San Antonio. Except for one large rockfall that
temporarily closed a highway in the Andes Mountains northeast of Santiago
(fig. 1), landsliding in these high mountains generally appears to have been
minor. This contrasts markedly with the 1970 Peru earthquake, which was
comparable in magnitude, location and mechanism, but which was accompanied by
extensive and destructive landslides in a large area of the Peruvian Andes as
much as 200 km inland from the coast.

Liquefaction and compaction of unconsolidated sediments: In a number of
localities along the coast and the flood plains of rivers, water—laid
saturated sediments and man-made fills responded to the earthquake shaking by
cracking and settling induced by compaction and (or) lateral spreading through
liquefaction. In many places, engineered fills and structures on such
materials were damaged by differential settling or by extension cracking.
Damage to highways and bridges or approaches, mainly from differential
compaction, occurred in river flood plains throughout much of the Coastal
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Mountains and in the Central Valley, but liquefaction effects were observed
only along the coast and along the larger rivers at or near the coast (fig.
1) Liquefaction, with attendant lateral spreading and subsidence, has
resulted in costly damage to waterfront facilities in the port cities of
Valparaiso and San Antonio, has destroyed part of a major bridge near the
mouth of the Rio Maipo (Lo Gallardo), and has caused damage to one span of the
bridge across Rio Rapel.

In Valparaiso, lateral spreading of unconsolidated deposits along the
shore has caused local cracking and misalignment of pavements, roads, and
railroad lines at numerous localities. Major damage to the largest wharf
facility in the port (Muelle Prat) resulted from lateral spreading of the fill
placed within the perimeter bulkheads. As a consequence, there was about 58
cm extension (as determined from open cracks) across the wharf, which was
originally 100 m wide, with attendant differential settling of the surface and
misalignment of the railroad tracks for wharf cranes.

At San Antonio, extension and surface subsidence caused extensive damage
to the breakwater and wharf facilities and to the road and railroad lines
along the waterfront. Differential subsidence of as much as 90 cm of the fill
relative to the hreakwaters on the west wharf resulted in tilting and toppling
of the wharf cranes.

The Lo Gallardo bridge across Rio Maipo is a reinforced concrete bridge
840 m long with 28 spans 30 m long on reinforced concrete piers and piling
driven to 14 m beneath the piers. Liquefaction of the unconsolidated fill in
the river, which is more than 30 m thick, resulted in differential settling of
the northern approaches, and in lateral flow of the liquefied sediment towards
the river channel in a zone roughly 100 m wide on either side of the
channel. The bottoms of piers on both sides of the channel were tilted
inwards towards the channel and settled vertically to the extent that one pier
collapsed dropping two of the bridge spans into the river. Incipient
liquefaction of sediments beneath two of the central piers of the Rio Rapel
bridge, a reinforced concrete structure about 250 m long, is suggested by a
shift of the span they supported as much as 38 cm in a downstream direction
with up to 14.5 cm relative subsidence on the downstream side.

At the San Antonio pier and along the Rio Vifia in Viffa del Mar,
liquefaction was accompanied by extrusion of water and sand (sand boils).
Although such extrusions undoubtedly also occurred elsewhere, evidence for
them was largely obliterated by the time of my reconnaissance almost 4 weeks
after the earthquake,

Summary and conclusions:

A) The earthquake and tsunami were generated by relative seaward

thrusting along the plate boundary that dips from the Peru-Chile
Trench beneath the continental margin. The main shock rupture may
have involved a 40-km-wide section of the eastern down-dip part of
the plate boundary with its eastern limit about 40 km deep and within
10 km of the coast. Dislocation modeling predicts small amounts of
tectonic subsidence (<50 cm) in suitably located coastal areas
increasing gradually to a maximum of 120 cm subsidence 20-30 km east
of the coast.

B) There were no active faults on land, in accord with aftershock data

indicating consistent focal depths of 40 km or more beneath the
coast.
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c)

D)

Landslides and related mass gravitational movements occurred
primarily in the coastal mountains in a belt about 50 km wide.
However, damage resulting from downslope gravitational movements was
largely limited to extensive areas of dune sands and, to a lesser
extent, poorly consolidated late Cenozoic deposits that overlie
crystalline bedrock in the coastal cliffs in the San Antonio,
Valparaiso, and Vitia del Mar areas. Considering the earthquake
magnitude, landslide effects are relatively minor. This may be in
nart because the earthquake occurred at the end of the dry season at
a time of minimum ground saturation and because much of the coastal
mountain belt is underlain at shallow depth by crystalline bedrock.
The importance of other factors, such as the mechanism of slip and
velocity structure of the upper plate, is not known and merits
further investigation.

Liquefaction and compaction of unconsolidated materials was largely
limited to sediments and fills along the coast and on some river
flood plains. Saturated fine dune and beach sand, whether in man-
made or natural deposits, appears to be especially susceptible to
liquefaction. The general scarcity of liquefaction effects in most
major river flood plains may be attributable to the coarseness of the
river deposits, which commonly are in the boulder to cobble size
range near the surface,
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SITE SELECTION AND FIELD EXPERIMENTS
by

S. T. Algermissen, U.S. Geological Survey, Denver, CO 80225;
E. Kausel, University of Chile, Santiago, Chile;
E. Sembera, U.S. Geological Survey, Menlo Park, CA 94025;
and P. C. Thenhaus, U.S. Geological Survey, Denver, CO 80225

The principal objective of the field experiment was to make use of the
aftershock sequence to obtain digital recordings of ground motions at a number
of sites having the following characteristics: (1) variable epicentral
distances from the aftershocks; (2) different geological and geotechnical
properties; (3) when possible, strong ground motion records of the main shock;
(4) different degrees of Modified Mercalli intensity (MMI) observed at
different sites as a result of the main shock.

Twelve sites were occupied during a 3-week period of time. A general
overview of the geographic distribution of the stations is shown in figure
1. Figures 2, 3 and 4 show the locations of each site in more detail. Table
1 contains the site number (used to identify the sites in figs. 2, 3 and 4) a
preliminary description of the material beneath the site, a preliminary
estimate of the Modified Mercalli intensity (MMI) observed as a result of the
main shock and information about accelerations recorded at sites during the
main shock.
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Figure 2.--Recording sites in Santiago (solid circles).

23

The numbers identify



71°307

o, PUNTA LAS GRUCES Sesd
L ,(‘€ A
LAS CRUCES ~ '\ R

33 304

PUNTA VERA W W
EYS

ROCAS bE sauro“

DOMINGO /E

CARTAGENA WY 41N

X \

Ton

|
/

"

Figure 3.--Recording sites (solid circles) in Llolleo, Barranca (San
Antonio) and Cartagena (the map is adapted from Corvalan and

Munizaga, 1972).

The numbers identify the sites listed in table 1.

Qal = Quaternary alluvial deposits and dunes; Qt = Quaternary
terrace deposits; TTm = Upper Tertiary marine sedimentary rocks
including the Navidad formation (Miocene) and Pliocene strata;
Pzq = Quintay formation (lower Paleozoic and older) amphibolites

and gneisses.
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THE RECORDING SYSTEM
by

J. Sena, C. Dietel, E. Sembera, G. Maxwell,
G. Jensen, J., Gibbs, R. Borcherdt, and
J. VanSchaack, Menlo Park, CA 94025

The recording system used in this study is the “General Earthquake Obser-
vation System” (GEOS) (fig. 1) designed for use in a wide range of seismic
studies. The system is designed around a central-processing-unit (microcom-—
puter) for control of modular software and hardware components. The six
channel system was equipped with a three-component forced-balanced acceler-
ometer (Kinemetrics) and a three-component velocity transducer (L-22, Mark
Products),

The digital seismic signals were recorded on a cartridge style (data
quality) magnetic tape at a throughput rate of 1200 samples per second. The
system was operated in the self-trigger mode. Trigger ratios of 4:1 and 2:1
were used (STA/LTA, fig. 1) depending upon cultural noise levels. Butterworth
filters selected at 50 Hz were used throughout the recording period (fig. 2).
Two seconds of pre—event memory for recording onset of seismic events were
used in the self-trigger mode. Timing signals were provided by an internal
clock which was set to a master clock or synchronized automatically to WWVB.
The response of the system with a three—component velocity transducer and
accelerometer is shown in figure 3. The response shown in figure 3 is that of
the system using a L-4 geophone with a natural frequency of 1 Hz. The L-22
geophones used in this study have a natural frequency of 2 Hz; this would have
the effect of shifting the corners of the response curve 1 Hz to the right. A
manuscript detailing the developmental motivation, systems functions, and
adaptability has been submitted for publication by Borcherdt and others (1985)
in the Seismological Society of America Bulletin.
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GE0S* Specifications

Nicvocomputer and Communications

Internal CPU: (CMOS, 12 Bit.

External CPU: optional.

Data transfer:
Internal: Direct Memory Access
170 Port: RS-232 compatible baud rate

programmable to standard rates.

Telecommunications: UART, Modems optional.
Analog playback via A/D.

Program Memory

Executable Memory: BK 12 Bit word CMOS RAM,

Program Storage: 16K 12 Bit word CMOS PROM.

Alternate Frogram Storage: Programs may be stored
on magnetic tape for loading directly into program
RAM

Sensor Inputs and Signa) Conditioning

lInput Channels: 6 balanced differentisl inputs,
program selectable.
Preampiifier Dynamic Range: greater than 100 dB at O
dB gain, programmable in 6 dB steps 60 to O dB.
Filters: low pass Butterworth, 42 dB per octave;
program selectable, 17 Hz, 33 Hz, 50 Hz, and
100 Hz; high pass .1 Hz € dB per octave.
Calibration: Internal, automatic with or without
sensors.
Transient Protection: $ 15V

Analog to Digital Conversion

Resolution: 16 bits (1 part in 65,536).

Stability and Linearity: 2 1 count-no missing codes
over full temperature range of -20°C to + 60°C.

Conversion Rate (Total samples per second for all
active channels): 1200 samples per second maximum,
.29 samples per second minimum; programmable as
1,200/N where N is 1 through 4,096,

Pre-Event Data Memory

Size: 4,096 words, 16 bits per word.

Pre-trigger memory: Five, 512 word blocks minimum
at 1,200 samples per second (2.14 seconds), six 512
work blocks st 300 samples per second
(10.24 seconds), program selectable.

Mass Data Storage/Retrvieval

Cartridge: Read/Write 3M type, 1600 bpi.

Tape capacity: 3,680 512 word blocks (1.88 million
samples) typical for 450 ft. tape, 26 minutes
continuous record time at the maximum sample rate.

Tape Speed: 30 ips write or read.

Slave Recorders: 2 optional, separate housing.

Patent pendinag.

Time Control

External:

WWVB Receiver: Automatic synchronization of
internal clock to WWVB under program command.

Master Clock: Synchronization of internal clock
with external pulse and corresponding time
corrections derivable at selectable times under
program command. :

Manual: Time entered through keyboard and
synchronized manually.

Internal:
Frequency: 3 MHz.
Temperature Stability: # 1 x 10°5; - 209C to
+ 70° C.

Aging Rate: less than 5 x 10°7 per year.
Operator Interface

Operation Environment:
under software control.

Display: 32 character, alphanumeric display, 18
segment, character hefght .15 in. LED with optical
filters.

Keyboard: Mechanical switch with dust cover and
water seal, 20 button keyboard with numeric and
function entry.

Status Checks: Time, battery voltage, no. of events,
% of tape used, elapsed time since power on.

Debug: single and subroutine stepping.

Operating Modes

Engiish language commands

Self triggering:
Near field: Selectable short term average (STA),
Tong term average (LTA), ratio.
Teleseismic: Comparative ratios for two selectable
frequency bands.
Pre-set time: record st selectable times and
intervals.,
Both: operate in both pre-set time and self
trigger ing modes.
Manual: record under keyboard control for start-stop
functions,

Power Requirements

Voltage, current: + 24 VDC nominal 2 15%, 40 mA
nominal in operating mode with display off, 300 mA
nominal with display on, 600 mA with display on and
recording.

Internal batterfes: ¢ 24 V, S AH Gates type, will
operate about 3 days on internal batteries,
connector provided for internal battery charging or
external battery operation.

Physical and Environmental Requirements

Case Type: Waterproof aluminum case, 20 1/2" long,
9 7/8" wide 13 3/4* high.

Weight: 47 1bs. with internal batteries.

Operating Temperature Range: - 20°C to + 60°C, 15%
to 95% rel. humidity.

Figure l.--Specifications for GEOS recording system.
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Figure 3.--Relative amplitude response of the GEOS recorder, GEOS with L4-C
velocity transducer and forced balanced accelerometer (FBA), and square root
of power spectral density for Earth noise (Aki and Richards, 1980).
Amplitude responses were determined for recorder with constant input voltage
of 10V, for recorder with L4-C constant input velocity of 10 cm/sec of 10V
at sensitivity of 1 V/cm/sec at 10 Hz, and for recorder with FBA with
constant input acceleration of 2 g. Two sets of sensors operating
simultaneously and linear dynamic range of 96 dB allow system to record 10
Hz signals with amplitudes ranging from 2 cm in displacement to 2 g in
acceleration on scale without operator intervention.
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DATA PROCESSING AND COMPUTATION OF SEISMOGRAMS

by

J. Watson and C. Mueller, U.S. Geological Survey, Menlo Park, CA 94025;
and D. Carver, U.S. Geological Survey, Denver, CO 80225

Aftershocks following the May 3, 1985, Chile earthquake (Ms=7.8) yielded
an extensive set of digital strong motion recordings. The aftershock data set
consists of forty-five DC300XL data cartridges from twelve stations recorded
on wide-dynamic-range GEOS instruments (Borcherdt and others,1985). Each GEOS
operated in trigger mode, simultaneously recording six channels of ground
motion at 200 samples-per-second-per-channel: three-component ground
acceleration (Kinemetrics FBA-13 force-balance accelerometer) and three-
component ground velocity (Mark Products L-22 geophone). FBAs were recorded
at relatively low gain in order to obtain unclipped recordings of large ground
motions while geophones were recorded at higher gain in order to obtain high-
signal-to-noise recordings of smaller ground motions. This scheme provided
high quality recordings over a wide range of ground motion amplitude. No
clipped records were observed. Each GEOS clock was set once at installation
using a portable master clock; thereafter clock-drift errors were not measured
and clocks were allowed to drift without adjustment. ‘For this reason event
times can be used only to correlate trigger times for the purpose of event
identification. Other instrument parameters are described elsewhere in this
report.

Data cartridges were returned to Menlo Park for processing. During
playback, the computer directory structure (and the subsequent magtape
archival structure) were organized by increasing trigger time. Data
cartridges were played back with a Tandberg TDC3000 digital cartridge recorder
onto a PDP11/70 minicomputer. The software interface is the FORTRAN program
RDGEOS written by Gary Maxwell of the USGS, Menlo Park. The data were
demultiplexed and stored, one trace per file, in blocked binary format. Each
file name consists of 13 characters following the Branch of Engineering
Seismology and Geology file name convention:

char 1-3 --- Julian day

char 4-% --- hour

char 6-7 --- min

char 8 --- seconds ('A'=0-3, 'B'=3-6, ..., 'T'=57-60)
char 9 --- component ('1-3'=acceleration, '4-6'=velocity)
char 10 --- '.!

char 11-13 --- station-instrument identifier

Each file consists of two header blocks which contain relevant field and
playback parameters followed by data blocks. Figure 1 is a plot of trigger
times, per station, (for all events) versus Julian day.

With the files on disk two archival tapes were made and all seismograms
were plotted for preliminary seismic interpretation. The data set was then
winnowed using DSD map (Cranswick and Dietel, 1985) so that single-station
triggers were excluded. Considering the overall network configuration
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(station-to-epicenter distances ranged up to 100 kilometers), a twenty-second
sliding window was chosen in order to select common-event triggers. The
winnowed data set was then copied to the VAX-11/750 minicomputer for more
detailed seismic analysis. Table 1 lists aftershocks that were recorded at
two or more stations. Magnitudes were calculated by the University of Chile
from the durations of seismograms recorded by their local network and are
preliminary (E. Sembera, written commun., 1985). The three letter station-
instrument codes appear in the first row and the origin times of events appear
in the first column. If a station recorded an event, character 8 of the file
name (the triggertime 'seconds' character, a useful file identifier) appears
in the table. Of 1082 triggers from all twelve stations, 55 events were
recorded at two or more stations, 12 events at four or more stations, and six
events at six stations.

Figures 2 through 35 are scaled-amplitude plots of recorded velocity for
all events occuring at four or more stations plus several events of engineer-
ing interest recorded at fewer stations. Velocity is shown in these plots
because, for the smaller ground motions, velocity traces are higher quality
than acceleration for the reasons given above. 1In each plot vertical-
component traces are plotted at the top (positive amplitude corresponds to
upward ground motion) followed by first-horizontal-component traces (positive
amplitude corresponds to northward ground motion) second-horizontal-component
traces (positive amplitude corresponds to eastward ground motion).
Hypocentral P-arrival times are aligned at one second to facilitate waveform
comparison. The peak amplitude is annotated on each trace. Figures 36 and 37
show all six components for events 0840515A at SAC (magnitude=5.5) and
0931306J at VAL (magnitude=5.3), respectively. These plots show the quality
of the data for two relatively large events and allow a direct comparison
between acceleration and velocity.
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Table 1.--Events recorded by two or more GEOS instruments--Continued
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Figure 2.--Scaled amplitude plots for event 0832346. Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace

is arbitrarily shifted. Peak velocity is annotated.
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Figure 3.--Scaled amplitude plots for event 0840129. Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace

is arbitrarily shifted. Peak velocity is annotated.

39



RHSEC 20 HR‘I BS PLDT DECIMRTED BY: \l

M *& oeu 155 .SAA UP
? ﬁﬂﬂ W . 00856 CM/3
. 0640155My. SRB UP
.00u72 CH/S
thvw ﬂ” 0840155K4.SAC UP
.0104 CM/S
08403i55NU. SAD UP
b ,}MW (b
| l 0840155M5. SAR H=0
W | .0162 CM/5
0840155M5.SAB H=0
' -.00202 CM/S
} 0BY0155N5. SAC H=0
| h L0214 CM/S
0B40155N5. SAD H=0
.0297 CM/5
0840155M6. SRR H=30
MWMWMWJWWWWM-'U]SU CM/S
h ? | 0BYO155M6. SAB H=90
-.00320 CH/S
0840155N6.SAC H=90
.0154 CM/S

D8YD1S5NE. SAD H=30
MWMWWWM‘WWMMWP -.0213 CM/3

Figure 4 ,——~Scaled amplitude plots for event 0840155. Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace

is arbitrarily shifted. Peak velocity is annotated.
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Figure 5.--Scaled amplitude plots for event 0840304. Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace

is arbitrarily shifted. Peak velocity is annotated.
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Figure 6.--Scaled amplitude plots for event 0840514, Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace

is arbitrarily shifted. Peak velocity 1is annotated.
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Figure 7.--Scaled amplitude plots for event 0842241. Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace

is arbitrarily shifted. Peak velocity is annotated.
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Figure 8.--Scaled amplitude plots for event 0850703. Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace

is arbitrarily shifted. Peak velocity is annotated.
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Figure 9.--Scaled amplitude plots for event 0860732. Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace

is arbitrarily shifted. Peak velocity is annotated.
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Figure 10.--Scaled amplitude plots for event 0870443. Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace
is arbitrarily shifted. Peak velocity is annotated.
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Figure 11.--Scaled amplitude plots for event 0872123. Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace

is arbitrarily shifted. Peak velocity is annotated.
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is arbitrarily shifted. Peak velocity is annotated.
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Figure 13.--Scaled amplitude plots for event 0880513.

arrivals are aligned at 1 second.
is arbitrarily shifted. Peak velocity is annotated.
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Figure 14.--Scaled amplitude plots for event 0880546. Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace

is arbitrarily shifted. Peak velocity is annotated.
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Figure 15.--Scaled amplitude plots for event 0890618. Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace

is arbitrarily shifted. Peak velocity is annotated.
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Figure 16.~--Scaled amplitude plots for event 0890633.
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arrivals are aligned at 1 second. If the recorder triggered on S, the trace

is arbitrarily shifted. Peak velocity is annotated.
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Figure 17.--Scaled amplitude plots for event 0890815. Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace

is arbitrarily shifted. Peak velocity is annotated.
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Figure 18.--Scaled amplitude plots for event 0890905. Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace
is arbitrarily shifted. Peak velocity is annotated.
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Figure 19.--Scaled amplitude plots for event 0891210. Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace
is arbitrarily shifted. Peak velocity is annotated.



Figure 20.--Scaled amplitude plots for event 0891848,
arrivals are aligned at 1 second. If the recorder triggered om S, the trace
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Figure 21.--Scaled amplitude plots for event 0892026. Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace
is arbitrarily shifted. Peak velocity is annotated.
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Figure 22.--Scaled amplitude plots for event 0892209. Hypocentral P-wave
arrivals are aligned at 1 second. TIf the recorder triggered on S, the trace

is arbitrarily shifted. Peak velocity is annotated.
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Figure 23.--Scaled amplitude plots for event 0900825. Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace

is arbitrarily shifted. Peak velocity is annotated.
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Figure 24.--Scaled amplitude plots for event 0910620. Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace
is arbitrarily shifted. Peak velocity is annotated.
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Figure 25.--Scaled amplitude plots for event 0922303. Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace
is arbitrarily shifted. Peak velocity is annotated.
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Figure 26.--Scaled amplitude plots for event 0930357, Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace

is arbitrarily shifted. Peak velocity is annotated.
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Figure 27 .——Scaled amplitude plots for event 09313

grrivals are aligned at 1 second. If the recorder triggered on S, the trace
is arbitrarily shifted. Peak velocity is annotated.
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Figure 28.--Scaled amplitude plots for event 0932041. Hypocen
grrivals are aligned at 1 second. 1If the recorder triggered on S, the trace

is arbitrarily shifted. Peak velocity is annotated.

64



ARSEC:20-MAY-BS5. PLOT DECIMATED BY u

r~— Y —rr—r

0941814J4.SAR8 UP
.00193 CM/S

, ﬁ' Ao, A A DSY1814YKY.CAR UP
.0081S CM/S

DOY1814FY.VCY UP
-.0664 CM/S

9 B1U4KY,AGY UP
.004BY CM/S

%—
o
O(D
Q=
D
vl

0941814 J5.5RB H=0
.00yB2 CM/S

" 0SY1814KS.CAR H=0
-.00415 CM/S

YKS.AGU H=D

J6.SAB H=90

14K6.CAR H=S0
8 CM/S

094181Y4YF6.VCH H=30
-.0805 CM/S

K6.AGU H=90
CM/S

SECS

Figure 29.--Scaled amplitude plots for event 0941814.

Hypocentral P-wave

arrivals are aligned at 1 second. If the recorder triggered on S, the trace

is arbitrarily shifted. Peak velocity is annotated.
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Figure 30.-—Scaled amplitude plots for event 0950253.

ZD

Hypocentral P-wave

arrivals are aligned at 1 second. If the recorder triggered on S, the trace

is arbitrarily shifted. Peak velocity is annotated.
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Figure 31.--Scaled amplitude plots for event 0950334. Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace

is arbitrarily shifted. Peak velocity is annotated.
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Figure 32.--Scaled amplitude plots for event 0951240. Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace

is arbitrarily shifted. Peak velocity is annotated.
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Figure 33.-—Scaled amplitude plots for event 0951744.
grrivals are aligned at 1 second. If the recorder triggered on S, the

is arbitrarily shifted. Peak velocity is annotated.
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Figure 34.--Scaled amplitude plots for event 0960525. Hypocentral P-wave

arrivals are aligned at 1 second. If the recorder triggered on S,

is arbitrarily shifted. Peak velocity is annotated.
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Figure 35.--Scaled amplitude plots for event 0961443. Hypocentral P-wave
arrivals are aligned at 1 second. If the recorder triggered on S, the trace

is arbitrarily shifted. Peak velocity is annotated.
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Figure 36.--Recorded acceleration and velocity for event 0840515 at SAC.
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SITE SPECTRA AND SPECTRAL RATIOS

by

B. Askew, U.S. Geological Survey, Denver, CO 80225;
C. Mueller, A. Converse, and J. Watson, U.S. Geological
Survey, Menlo Park, CA 94025; S. T. Algermissen, U.S.
Geological Survey, Denver, CO 80225; R. Borcherdt,
U.S. Geological Survey, Menlo Park, CA 94025; and
A. Tarr, U.S. Geological Survey, Denver, CO 80225

Site spectra and spectral ratios were computed from the aftershock data
of the May 3, 1985, Chile earthquake, using the winnowed velocity data stored
on the VAX 11/750 in the Branch of Engineering Seismology and Geology. The
spectral analysis techniques used here are described in Rogers and others
(1980). '

The programs used to compute spectra and spectral ratios were written
originally by Roger Borcherdt and were later modified by Al Rogers and Mark
Meremonte. Additional programming was done by April Converse and Bonny Askew
for this project. These programs process the signal by (1) filling an array
appropriately sized for a Fast Fourier Transform with data points over a
selected window, (2) removing any DC component from the signal, (3) applying a
leakage correction to taper the signal, and (4) padding the array as necessary
with zeroes. The spectrum is smoothed using a triangular window of a
specified length and the power spectral density of the signal is then
computed. The same processing is also applied to a section of input data
taken before the arrival of an event in order to define the spectrum of the
noise in the system. The signal-to-noise ratio is then computed, and, where
this falls below a given discriminant, the signal spectrum is set to a value
equal to the minimum value of the spectrum (determined where the signal-to-
noise ratio is greater than the discriminant). The seismogram, after
processing, and the spectrum, with noise removed, are plotted. For a given
event, spectral ratios are computed between each station in the input data set
and a specified reference station. Spectral ratios are set to a value close
to zero at points where the signal-to-noise ratio is less than the
discriminant for either of the two stations in the ratio. These spectral
ratios are also plotted.

In order to process the data from the Chile aftershocks, a subset of the
winnowed data was selected consisting of events recorded at three or more
stations. Three reference stations were selected: SAB, CAR, and VAL. Each
reference station and the stations associated with it is called a group.

These groups are listed in table 1. As an example, a given event might have
one group of data referenced to SAB, another group referenced to CAR, but none
referenced to VAL. 1If, for a given event, data were recorded at a reference
station but no other stations in the reference group, these data were taken
out of the input set. Data recorded for a given event at stations in a
reference group for which no data were recorded at the appropriate reference
station were taken out of the input set. Other data were deleted because the
signal was not of sufficient quality or had not triggered properly. Spectra
and spectral ratios were computed from the remaining data set and these
spectra and ratios are shown in table 2.
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TABLE 1.—Reference Groups

Reference
station SAB CAR VAL

SAA SAN VC4
SAC SCH END
SAD
SAE
AGU

A signal-to-noise discriminant value of 3 was used for all the data.
Thus spectra and spectral ratios were computed only where the signal was at
least three times as great as the noise. For all data, the first 1.5 sec was
used as the noise sample. The length of the signal was determined for each
reference group of each event after examining the playbacks for those
records. All signal samples were chosen to begin at 1.5 sec after the
instrument triggered. The length of the smoothing window was chosen to be 7
points (with 200 points per sec) for events where the signal was up to 60 sec
long, and 15 points for signals greater than or equal to 60 sec long.

A sample of the spectra and spectral ratio plots are included in figures
1 through 40. Included with each plot of the signal spectrum is the processed
time series signal from which the spectrum was computed. The signal spectrum
is plotted with noise removed. The technique for removing noise as previously
described accounts for the abrupt dropoff to a constant low level in portions
of some spectra. Plots of spectral ratios are also included. The horizontal
O-degree component for the stations SAN and VC4 are not included because these
components did not record properly.

REFERENCES
Rogers, A. M., Covington, P. A., Park, R. B., Borcherdt, R. D., and Perkins,

D. M., 1980, Nuclear event time histories and computed site transfer

functions for locations in the Los Angeles region: U.S. Geological
Survey, Open—File Report 80-1173, 37 p.
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Event
Day Hour

083-2346
084-0129
084-0304
088-0251
088-0546
089-0618
289-0633

289-0814
089-0905

e89-1210
089-1848

©89-2026
089-2209

090-0825

091-0619
093-0357

893—1306
095-0253

095-0334
095~1240
095-1744
096—-0525
096—-1442

TABLE 2.—Spectral Ratio Sets

Ref.
Station

SAB:
SAB:
SAB:
SAB:
SAB:
SAB:
SAB:
CAR:
SAB:
SAB:
CAR:
SAB:
CAR:
SAB:
CAR:
SAB:
SAB:
CAR:
SAB:
CAR:
CAR:
SAB:
VAL:
SAB:
VAL:
SAB:
VAL:
VAL:
VAL:
VAL:
SAB:
SAB:

Stations used to
compute ratios

SAA
SAA
SAA
SAA
SAA
SAA
SAA
SCH
SAA
SAD
SAN
SAE
SAN
SAA
SAN
SAA
SAA
SAN
SAA
SAN
SAN
SAA
VC4
SAA
vC4
SAA
vC4
vC4
vC4
vC4
SAA
SAA
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SAC
SAC
SAC
SAC
SAC
SAD
SAD

SAE
SAE
SCH

SCH
SAE

SAE
SAE

SAD

SCH

SAC

AGU
AGU
AGU
AGU

SAD
SAD
SAD
SAE

SAE

SAE
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Figure 1.--Time series and spectrum of event on March 29 at 02:51:57 for the
vertical component at station SAB.
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Figure 2.--Time series and spectrum of event on March 29 at 02:51:57 for the
vertical component at station SAA.
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Figure 8.-—-Time series and spectrum of event on March 29 at 02:51:57 for the
horizontal O-degree component at station SAB.
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Figure 9.--Time series and spectrum of event on March 29 at 02:51:57 for the
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Figure 15.--Time series and spectrum of event on March 29 at 02:51:57 for the
horizontal 90-degree component at station SAB.,
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Figure 16.—~Time series and spectrum of event on March 29 at 02:51:57 for the
horizontal 90-degree component at station SAA.
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Figure 17.--Time series and spectrum of event on March 29 at 02:51:57 for the
horizontal 90-degree component at station SAC.
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Figure 22.--Time series and spectrum for event on March 30 at 12:10:39 for the
vertical component at station CAR.
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Figure 23.--Time series and spectrum for event on March 30 at 12:10:39 for the
vertical component at station SAN,
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Figure 24 .-—Time series and spectrum for event on March 30 at 12:10:39 for the
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Figure 27.—-Time series and spectrum for event oa March 30 at 12:10:39 for the
horizontal O-degree component at station CAR.
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Figure 30.——Time series and spectrum for event on March 30 at 12:10:39 for the
horizontal 90-degree component at station CAR.
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Figure 31.—Time series and spectrum for event on March 30 at 12:10:39 for the
horizontal 90-degree component at station SAN.
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Figure 32.-~Time series and spectrum for event on March 30 at 12:10:39 for the
horizontal 90-degree component at station SCH.
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Figure 35.—Time series and spectrum for event on April 5 at 13:06:27 for the

vertical component at station VAL.
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Figure 36.——Time series and spectrum for event on April 5 at 13:06:27 for the
vertical component at station VC&4.
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Figure 38.——Time series and spectrum for event on April 5

horizontal 90-degree component at station VAL
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PRELIMINARY ANALYSIS OF GROUND RESPONSE
AND OBSERVED INTENSITY

S. T. Algermissen, U.S. Geological Survey, Denver, CO 80225;
E. Kausel, University of Chile, Santiago, Chile;
C. Mueller and R. Borcherdt, U.S. Geological Survey,
Menlo Park, CA 94025; P. C. Thenhaus and B. Askew,
U.S. Geological Survey, Denver, CO 80225

This report is a preliminary analysis of site response based on a
selection of data recorded at the sites previously discussed. The earthquakes
used together with the stations at which ground motion was recorded are shown
in table 1. The epicentral locations of the shocks are shown in figure 1.

The stations in Santiago - SAA, SAC, SAD and SAE were referenced to station
SAB, a rock site, and the spectral ratios SAA/SAB and SAC/SAB, SAD/SAB and
SAE/SAB were formed. The stations near San Antonio on the coast--SAN and SCH
were referenced to CAR, a rock site, and the spectral ratios SAN/CAR and
SCH/CAR formed. In Valparaiso, the rock site is VAL and the spectral ratio
VC4/VAL was formed. Data from stations END and AGU are not considered in this
report since spectral ratios using data from these stations have not yet been
analyzed. Furthermore, only the relationship of site response to Modified
Mercalli intensity observed after the main shock are analyzed in this report.

The spectral ratios were averaged using a geometric mean over three
period ranges: 0.1 to 0.2 sec, 0.2-0.5 sec and 0.5-1.0 sec for both the
vertical component and the horizontal component of ground velocity. The
horizontal component was obtained by averaging the spectral ratios obtained
from the two orthogonal horizontal ground motion components recorded. A
careful evaluation of the degree of damage (or lack of damage) was undertaken
at each recording site and a Modified Mercalli intensity (MMI) was assigned to
each site. The difference in intensity between each station location and the
intensity at each rock (reference) station site was noted. Figures 2 through
7 show comparisons of shaking response (relative to crystalline rock) with
differences in Modified Mercalli intensity observed at various stations and at
a reference station on crystalline rock. The spectral ratios show a strong
correlation with increased observed MMI. For sites with MMI's three degrees
higher than the reference crystalline rock site vertical component velocity,
spectral ratios are as large as 8:1; for horizontal component velocity
spectral ratios, the ratios are as large as 12:1. Preliminary analysis of the
spectral data indicates that recording small- to moderate-size earthquakes at
a variety of sites and analysis of the variation in level of shaking among the
sites may serve as a valuable tool in estimating shaking levels and damage
that might occur in large earthquakes.

The levels of ground motion recorded vary greatly from site to site as
does the observed MMI. No attempt has been made to correlate site geology
with increased intensity of shaking but examination of the descriptions of the
materials underlying each site and the corresponding observed intensities
(table 1, Site Selection and Field Experiments, Algermissen and others, this
report) shows a correlation. We plan to obtain more information on the
geology and geotechnical properties of the sites. This aspect of the site
response together with additional comparisons between site response and MMI
will be the subject of future reports.
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PRELIMINARY EVALUATION OF PERFORMANCE OF STRUCTURES
by
M. Celebi, U.S. Geological Survey, Menlo Park, CA 94025
in collaboration with
E. Sembera, U.S. Geological Survey, Menlo Park, CA 94025
GENERAL REMARKS

The structures in Central Chile, particularly on the coastal towns of
Valparaiso, Vitla del Mar, and San Antonio as well as the capital, Santiago,
were rigorously tested during the March 3, 1985, main event (Ms=7.8) and the
significant aftershocks. Although several engineered structures were damaged,
some severely, the overall performance of the majority of engineered struc-
tures subjected to the level of shaking generated by the earthquake should be
positively rated, particularly when the loss of life was limited to 176
persons, considering the magnitude of this earthquake. Non-engineered
structures, particularly old adobe structures, were heavily damaged
(especially in San Antonio). Only one engineered building in Santiago
partially collapsed. An eight story, reinforced concrete building (Edificio
El Faro) in Renecad suburb of Vitia del Mar suffered extensive damage (tilting
off vertical axis), and as a result was dynamited. Also in Renecé a
reinforced concrete structure built on an architectural configuration
following the sloping hill was practically broken in two because of the
differential settlement due to compaction of the sand underneath. Two modern
structures on the coast (Edificio H'Angoroa and Edificio Acapulco) in Vita del
Mar were severely damaged. Edificio Acapulco was severely damaged also during
the 1971 Chile earthquake. Several hospitals (in San Antonio, Valparaiso, and
Melipilla), grain silos, and school buldings, were also severely damaged.
Social housing units in various parts of the earthquake stricken area were
damaged. Of particular interest is the subdivision of Canal Beagle in Vita
del Mar where several structures were damaged and the distribution of damage
presents unique indication of terrain amplification.

The distribution of damage, particularly in towns and cities, exhibits a
general correlation with the type of soil conditions on which the structures
were built. This was particularly true in San Antonio, where due to liquefac-
tion and subsidence, the severity of the damage to structures increased. In
Cartagena, only 7 km north of devastated San Antonio, very few adobe struc-
tures failed. The structures built on the rocky hills of Cartegena survived.
In Valparaiso, the damage was mainly confined in the old river bed part of the
town while the structures on more solid ground (hills) performed exceptionally
well, In Vitia del Mar and Reneca the severity of damage to some of the
structures can be attributed to the foundation soil conditions.

Structures other than buildings also experienced damage of varying
degrees of severity. These include bridges (Maripo Bridge south of San
Antonio), grain silos in Melipilla, an earth dam (at La Marquesa), oil storage
tanks (Concom), tailing dams, and some industrial facilities. Two highway
tunnels (one 2.8 km long and the other 0.9 km long) between Valparaiso and
Santiago were not damaged. No damage was reported on the test reactor near
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one of these tunnels. Structures other than buildings will be described
elsevhere and therefore will not be treated in this report (Wyllie and Scholl,
oral commun., 1985).

PERFORMANCE OF BUILDING STRUCTURES IN DIFFERENT LOCALITIES

Santiago

The only engineered structure in Santiago that collapsed partially is
shown in figure 1. This apartment building structure had a soft first story,
and the columns in one end failed, thus causing the partial collapse.
Identical structures in the same subdivision survived. A typical observation
in downtown Santiago is the distress due to hammering or "pounding” of adja-
cent buildings separated by expansion joints (fig. 2). Other modern
engineered structures in Santiago performed without distress.

The majority of the damage in Santiago was inflicted on unreinforced
masonry (stone or brick) buildings (e.g., the Library of Universite of Chile
and the National Archives Building), a mixture of timber reinforced adobe
buildings and the parapets or architectural decoration of older structures.

San Antonio

In reclaimed areas of San Antonio, the columns of the structure in figure
3 settled due to liquefaction. Near this structure at the foot of a hill, a
structure with a reinforced concrete first floor and timber reinforced masonry
second floor (fig. 4), performed well while the weaker adobe buildings next to
it collapsed completely. The docks of the harbor in San Antonio were completely
destroyed (fig. 5) with all the cranes turned over because of the complete
loss of support due to liquefaction and sandboiling.

Across from the harbor in San Antonio, a2 new reinforced concrete framed
structure still under construction (fig. 6) was severely damaged. This two—
block-long structure had short columns (fig. 7) at the top of its very rigid
first floor stiffened by infill masonry walls and a tie beam. All of the
short columns were severely damaged, the longitudinal reinforcing buckled and
the concrete was crushed. It was apparent that sufficient development and
embedment length was not provided between the tie—beam and the corner column
(fig. 8). .

One of the two blocks of the four story Claudio Vicuffa Hospital was
severely damaged (fig. 9). The damage was concentrated in the second story
which effectively was the "soft story”™ of the structure. The columns were
well reinforced; however, the low quality of concrete and thick cover caused
extensive spalling (fig. 10). Also, the two story long column (extending
between the first and third floors) on the west end of the hospital was
severely cracked at the second floor level due to the story force acting at
the middle of that columm (fig. 11).

The apartment buildings in figure 12 located only two blocks from Claudio
Vicutia Hospital suffered no damage.

Vﬁlgaraiso
In Valparaiso, the harbor dock and related structures were damaged as

partially seen in figure 13. The damage to this harbor dock was not as
extensive as that in San Antonio.
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2.

3.

5.

6.

of lives lost (176) during the earthquake are not excessive corres-
ponding to an earthquake of this magnitude with epicenter close to
(50-150 km) centers with sizeable population,

Engineered structures, although several suffered severe damages, in
general performed well. There are lessons to be learned from the
performance of the engineered structures. For example, the low-rise
reinforced concrete symmetrical structures with central shear wall
core and columns around the perimeter performed well (in Valparaiso,

Vina del Mar and Santiago). A lesson relearned during this important

earthquake as well as others is the effect of foundation and the
influence of underlying soil conditions to the behavior and
performance of structures.

Special construction types (e.g., prefabricated panel buildings)
performed well during the earthquake.

Adobe and unreinforced masonry type non-engineered structures that
were not constructed properly or that were not braced well resulted in
the collapse or severe damage of these structures.

Once again, the seismic detailing of connections (beam-to-column con-
nections) is an important factor in the performance of structures
during an earthquake.

Effect of partial infill walls, infill walls or panels, to the
behavior has been demonstrated. The stiffness characteristics and
therefore the dynamic performance of structures has been altered while
providing infills to framed systems. In other cases, infill walls
have greatly decreased the seismic performance by shortening the
effective length of columns.

The following preliminary recommendations are made as a result of the
preliminary evaluation of the performance of structures:

1.

2.

3.

4.

The repair process of the structures which will continue should be
carefully followed. Since seismic events recur frequently in the
region, rather than quick patching up, careful application of the well
proven repair methods should be followed. ,

Further work on the possible terrain amplification at Canal Beagle in
Vitia del Mar should be performed. This effort will facilitate )
understanding the phenomena better as well as providing insight for
future zoning of such sites.

Amplification studies in two perpendicular lines in Viffa del Mar
should be performed to understand the effect of the different alluvial
deposits as compared to rock sites.

One or more specific structures in Vinta del Mar (preferably at alluvi-
al type soil conditions) should be instrumented to provide sufficient
data into its behavior during future events.
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